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Abstract. Starting from a causal thermodynamical approach, we study the equilibrium 
fluctuations of relativistic thermoviscous fluids. The results are compared with those of 
microscopic theory, and the transport coefficients of radiative fluids are obtained. Likewise, 
non-equilibrium corrections for the fluctuations of the bulk viscous pressure are evaluated 
for different media. 

1. Introduction 

So far the analysis of fluctuations of dissipative fluxes in relativistic media has received 
little attention in the literature, at least to our knowledge. Perhaps the most important 
attempt has been via the microscopic approach by Zubarev (1974). In the last few 
years, at the classical level, the analysis of fluctuations of dissipative fluxes and of 
classical variables has been unified into a simple and generalised Einstein formula for 
the probability of the fluctuations, namely 

Pr - e x p [ ( ~ / 2 k ~ ) s ~ q ]  (1.1) 
where k B  is the Boltzmann constant, M the mass of the system and a generalised 
specific entropy function. This generalised entropy contains as independent variables 
not only the conventional ones, but the dissipative fluxes as well (Casas-Viuquez and 
Jou 1981). In this way both kinds of quantities are considered on the same footing. 
The probability and the second moments of fluctuations arise immediately from a 
generalised Gibbs equation (Lebon et a1 1980) in combination with Einstein’s formula. 
The results thus obtained (Jou et a1 1980) recover in a very direct way those of 
traditional approaches. 

Perhaps one of the main consequences of the generalised Gibbs equation is the 
causal character of the ensuing transport relations, i.e. they predict finite speeds for 
the propagation of dissipative disturbances, in contrast with conventional approaches 
based on the local equilibrium hypothesis. As it can be easily understood, this property 
is indispensable in any relativistic treatment of fluctuations if one wishes to avoid 
conceptual inconsistencies. 

Our first objective in this paper is to study, in 0 2, the equilibrium fluctuations of 
relativistic thermoviscous fluids. As an application we deduce, in § 3, the phenomeno- 
logical transport coefficients of a radiative fluid, which has a notable importance in 
both cosmological and astrophysical problems. Finally, 0 4 is devoted to analysing 
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the non-equilibrium corrections to the traditional Landau-I ifshitz formula for the 
bulk viscous pressure as it fluctuates around a given steady state, and we provide 
explicit expressions for two relativistic fluids: a mixture of leptons and photons and 
a gas of massive neutrinos. 

As is customary, g’” indicates the metric tensor of signature +2, and A”” the spatial 
projector g”“ +U%”. The unit world velocity U” is dimensionless and fulfils the 
restriction uLILil, = 0, where the dot denotes differentiation along the world line. 

2. Equilibrium fluctuations of thermoviscous fluids 

In a previous paper (Pavbn er a1 1982) we introduced the generalised Gibbs relation 

Tq = d +prj + zla lqwqF + uaJIh + vag WFyWfi, (2.1) 

for heat conducting relativistic viscous fluids, besides the transport equations for the 
involved dissipative processes. These transport equations turn out to be not only of 
causal type but also nonlinear in the fluxes. As our purpose in this section is to study 
the fluctuations of dissipative fluxes around the equilibrium state, we will not consider 
such nonlinear terms, which are only relevant far from equilibrium. With this in mind 
one has 

aidl, = (kcT)-’q, +(cT)-’A,”(T,, + Tci.)+alu,q.li” (2.2a) 

(2.26) 

(2.2c) 

a2fI = (cl)-% + U”;” 
a3WWv = (2c5)-’wWu + I W ( ~ A ~ ~ ) U ( ~ ; ~ ) D  +UwFp~,hP + U ~ W A , ~ ~ I  

where the parentheses [I. . . ] indicate that we must take only the traceless part of the 
enclosed quantity. Here qlL, Il and W,, stand for the heat flux and the scalar and 
shear viscous pressure respectively, whereas the parameters ai are defined by a1 = 
-71/kT, a2 = - T Z / ~  and a3 = -73125. The T~ (i = 1 ,2 ,3 )  represent the proper relaxa- 
tion times of each individual dissipative process and k, and 5 denote the phenomeno- 
logical coefficients of heat conductivity and bulk and shear viscosities respectively. 

From (1.1) and (2.1) we obtain for the probability of fluctuations of dissipative 
quantities the expression 

(2.3) 

Let the operators A”JSq] and AFv[Sq] represent the quadratic averages 
(sq”(x“)Sq,(x“))and(Sq”(x“ +Ax‘)Squ(xu))respectivelywherex“ andxu + Ax“ mean 
two arbitrary event points pertaining to the same world line. The indices attached to 
A (and A) imply the appropriate tensorial order of Sq. This new notation has the 
advantage of compactness as compared with the usual ones used till now. Of course, 
the quadratic averages of the remaining fluctuating quantities admit an analogous 
representation. 

Pr(SqA, an, S WAp) - exp{(V/2kBT)[a1Sq”Sq, + a2(Sn)’ + a d w ” ” ~ w , , ] ) .  

From (2.3) the second moments in an arbitrary event point, say xu,  read 

( 2 . 4 ~ )  

(2.4b) 

( 2 . 4 ~ )  
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In order to derive the correlation functions, & S .  . .], between two neighbouring 
event points on the same world line, say x m  and xu + Axa, we need the evolution 
equations for the fluctuations. These arise from (2.2) and in particular for the heat 
flux one has 

(6q’”)‘ = -(c7J1Sq’”. (2.5) 
This equation is a consequence of: (i) neglecting the relativistic temperature gradient 
since the temperature fluctuates more slowly than the heat flux, and (ii) setting U, = 0, 
as the fluid is at thermodynamic equilibrium. By integrating (2.5) and combining it 
with (2.4a), we get 

L”JSq l=  A’”JSq1 exp(-slcTd, (2.6) 
s being the arc length measured along the world line. 

The same procedure leads to entirely similar expressions for the quantities A[SrI] 
and &”yAp[SW]. 

By means of a very different method, Zubarev (1974) derived a set of relativistic 
expressions for the fluctuation-dissipation theorem corresponding to the heat conduc- 
tivity and the bulk and shear viscosities. His starting point is a non-equilibrium 
statistical operator which describes a collectivity in a stationary state outside equi- 
librium. As it can be easily understood, it is of great interest for us to establish some 
contact with this formulation, since the ability to define microstates for non-equilibrium 
systems would give a firm statistical basis to the concept of non-equilibrium entropy. 
Therefore our objective here is to compare Zubarev’s expressions with the ones 
deduced by us (2.4), from a phenomenological basis. This can be easily performed if 
an exponential decay for the fluctuations is assumed. In such a case Zubarev’s 
expression for the bulk viscosity coefficient 

(2.7) 

reduces to (2.46), and in a similar manner the indexed contracted forms of ( 2 . 4 ~ )  
and ( 2 . 4 ~ )  are immediately obtainable from the corresponding Zubarev equations. 
Of course, the factor exp(-As) appearing in (2.7) is to ensure the convergence of the 
integral. 

3. Phenomenological coefficients of radiative fluids 

So far the calculation of phenomenological transport coefficients k, 5 and 5 of radiative 
fluids has been carried out, up to first order in the mean free time, through a 
phenomenological approach (see e.g. Weinberg 1971) or by means of a kinetic one 
(see e.g. Udey and Israel 1982). However, any intermediate procedure based on the 
theory of fluctuations has not yet been employed in that direction, at least to our 
knowledge. Our aim in this section is to determine such coefficients by means of the 
fluctuation-dissipation expressions (2.4) deduced above. 

To this end, let us consider a mixture of material fluid-with very short mean free 
times-and radiation (photons, neutrinos, gravitons), with finite mean free time 7. 

The radiation is mainly responsible for the dissipation, as its mean free time is much 
longer than the material fluid one. Hence, any component of fluctuation of heat flux, 
say Sq,, reduces to (c/J3)6erad, with erad  the energy density of the radiation. Then 
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with the aid of the relation (Landau and Lifshitz 1980, pp 186, 344) 

AISeradI = (kBCv/ V2jT2, (3.1) 

we have for the second moment of Sql 

h'l[Sq] = (c2kgC~/3V)T2 (3.2) 

Cv(=4aVT3) being the thermal capacity at constant volume of the radiation (photons 
for the sake of conciseness), and a the black-body constant. From (3.2) and ( 2 . 4 ~ )  
we get 

(3.3) 

To determine the coefficient of shear viscosity, 6, we recall that any component, 
say W12, of the viscous pressure tensor represents a moment flux, i.e. W12 = eradCICZ/C . 
By using the last relation besides (3.1) and ( 2 . 4 ~ )  it follows that 

k = *  3~ U T ~ T ~ .  

2 

6 = & u T ~ T ~ .  (3.4) 
The determination of the bulk viscosity coefficient, 6, requires a more subtle 

argument. As the radiative fluid is slightly removed from thermodynamic equilibrium 
a bulk viscous pressure n, related to the equilibrium one through Il = P,,, - p ,  arises. 
Here P,,, is the new total scalar pressure, and we may assume that this quantity obeys 
the relation P,,, = uaT4, U being a numerical coefficient not depending on U or T. 
After these brief considerations we can write 

s n = nSe,,,, n = (ap,,,/apE - f. (3.5) 
The latter relation in conjunction with (3.1) and (2.4b) yields 

[ = (3.6) 
As can be noted, if the particles making up the material fluid are very relativistic, one 
has (aP,,,/a(pe)), + f, and consequently [ -B 0. 

Our approach has the advantage of simplicity, as compared with the rather heavy 
calculations involved in prior procedures. Moreover, in the expressions for k, 5 and 
5 by previous authors there appears a single relaxation proper time T ,  whereas in ours 
there appear three different times, each corresponding to a different dissipative process, 
which seems more natural. This result is a consequence of the Gibbs relation (2.1). 
If one wants to obtain explicit expressions for the q it is necessary to resort to a 
microscopic analysis such as the one due to Straumann (1976). 

4. Non-equilibrium fluctuations 

In classical theory, several approaches have been proposed for the study of fluctuations 
around non-equilibrium steady states. Amongst them, that proposed by Jou et af  
(1982) uses the Einstein formula (l.l),  whose validity is assumed for such a situation, 
besides a generalised Gibbs equation. In this way, these authors obtain non-equi- 
librium corrections to the traditional Landau-Lifshitz formulae for the fluctuations 
of the heat flux and the electric current. 

Our concern here will be to apply the aforementioned method to derive explicit, 
although approximated, values for the non-equilibrium corrections of the bulk viscous 
pressure of some particular relativistic fluids in which the only dissipative process 
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taking place is the one caused by the bulk viscosity. Then the corresponding generalised 
Gibbs equation reduces in this case to 

+, = T-'& + T - ' ~ B  - w n R ,  CO = VT~/[T. (4.1) 

Assuming that the system expands slowly, its mean viscous pressure no(<< 1) is given 
by no = -clu w ; w  and the second moment, up to second order in IS,, can be expressed 
as 

A[sn] 21 (kB/&fCO)(l- n3/A), (4.2) 

A and A being respectively 

( 4 . 3 ~ )  

(4.36) 

Explicit expressions for h[SrI] for different types of fluids are obtainable from (4.2) 
if the expressions for w, p and E are inserted into it. 

In the particular case of the fluid filling the early universe during the leptonic 
era-a mixture of neutrinos and electrons with temperature varying between 1.5 X 

10" K and 6 x lo4 K-the energy density may be approximated by PE = a'T4, where 
a' differs from (I by a factor of the order of unity (see e.g. Weinberg 1972, p 536), 
although for practical purposes we shall not make a distinction amongst them, and 
p = (y - ~ ) P E ,  y being a numerical parameter lying in the range 1 s y s 2. Concerning 
f ,  we will consider two possibilities. In the first place, we take for [ the expression 
(3.6). Then we have 

In the second place, we consider f given by (De Groot et a1 1980, p 231) 

1 k B T  X J X ,  ' = da) 432(1+ C )  + 126C2' (4.5) 

This expression can be rewritten in a more convenient form by substituting the cross 
section, a ( T ) ,  in the function of the mean free time and the particle density. Then 

f =  (m4c5/7020.rrP)r2. (4.6) 
Here we have considered the particle fractions x, and x, being $ and 3 respectively, 
and the parameter C = 1. In this way one obtains 

(4.7) 

where the quantity B stands for the coefficient of r 2  on the right-hand side of (4.6). 
Finally, as a third example, we consider a fluid of massive neutrinos. Recently, 

Calkoen and De Groot (1981) have determined its bulk viscosity coefficient, which- 
for mc2 <( kBT-reads 
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After expressing 4' as a function of T~ rather than as a function of the cross section, 
and using 7a/8 instead of a, it is a straightforward matter to obtain 

where B =m4~8/(2632.rrh3c31n 10) and d(y)=-(5y  +1)2+&(y-1)[(y+1)2+ 

In writing down (4.6) and (4.9) we have made use of the simplifying assumption 
that r2 coincides with the collision time T, such as is frequently done in the kinetic 
theory of gases (see e.g. Stewart 1971). 

As can be noted, (4.2), and as a consequence (4.4) as well as (4.7) and (4.9), reduce 
to their equilibrium expression (2.46) for vanishing IIo. 

Apparently, in the limit when y + 2 the right-hand sides of equations (4.4), (4.7) 
and (4.9) diverge, but this is not so since y = $ means a fluid of massless particles and 
hence both 5 and no vanish. 

%Y + 1)(5Y + 111. 

5. Conclusions 

Starting from the relativistic version of extended thermodynamics, we have derived 
the fluctuation-dissipation expressions (2.4) for a heat conducting viscous fluid. These 
expressions agree with the Zubarev ones provided that an exponential decay for the 
fluctuations is assumed. Moreover, they allow us to derive the phenomenological 
transport coefficients of a radiative fluid in a quite simple manner. 

The non-equilibrium corrections (4.4), (4.7) and (4.9) of the traditional Landau- 
Lifshitz formulae may have particular importance in the study of dissipation in 
Friedmannian models of the universe since, as is well known, in such models vectorial 
and tensorial fluxes are forbidden. Likewise, the corresponding corrections to the 
density fluctuations may play a non-negligible role in the initial stages of galaxy 
formation. 
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